
A vertex operator approach for form factors of Belavin's -symmetric model

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

2010 J. Phys. A: Math. Theor. 43 085202

(http://iopscience.iop.org/1751-8121/43/8/085202)

Download details:

IP Address: 171.66.16.158

The article was downloaded on 03/06/2010 at 08:56

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/1751-8121/43/8
http://iopscience.iop.org/1751-8121
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


IOP PUBLISHING JOURNAL OF PHYSICS A: MATHEMATICAL AND THEORETICAL

J. Phys. A: Math. Theor. 43 (2010) 085202 (23pp) doi:10.1088/1751-8113/43/8/085202

A vertex operator approach for form factors of
Belavin’s (Z/nZ)-symmetric model*

Yas-Hiro Quano

Department of Clinical Engineering, Suzuka University of Medical Science, Kishioka-cho,
Suzuka 510-0293, Japan

E-mail: quanoy@suzuka-u.ac.jp

Received 10 December 2009, in final form 11 December 2009
Published 4 February 2010
Online at stacks.iop.org/JPhysA/43/085202

Abstract
Belavin’s (Z/nZ)-symmetric model is considered on the basis of bosonization
of vertex operators in the A

(1)
n−1 model and vertex-face transformation. Free-

field representations of nonlocal tail operators are constructed for off-diagonal
matrix elements with respect to the ground state sectors. As a result, integral
formulae for form factors of any local operators in the (Z/nZ)-symmetric
model can, in principle, be obtained.

PACS numbers: 02.30.Ik, 75.10−b

1. Introduction

This paper is a continuation of [1], in which we derived the integral formulae for correlation
functions of Belavin’s (Z/nZ)-symmetric model [2, 3] on the basis of vertex operator approach
[4]. Belavin’s (Z/nZ)-symmetric model is an n-state generalization of Baxter’s eight-vertex
model [5], which has (Z/2Z)-symmetries. As for the eight-vertex model, the integral formulae
for correlation functions were derived by Lashkevich and Pugai [6], and those for form factors
were derived by Lashkevich [7].

It was found in [6] that the correlation functions of the eight-vertex model can be obtained
by using the free-field realization of the vertex operators in the eight-vertex SOS model [8],
with insertion of the nonlocal operator �, called ‘the tail operator’. The most essential part
of [6] was the construction of free-field representations of �’s. Furthermore, those of the
off-diagonal (with respect to the ground state sector) elements of �’s were constructed in [7],
in order to obtain the form factor formulae of the eight-vertex model.

There are some researches which generalize the study of [6]. The vertex operator approach
for higher spin generalization of the eight-vertex model was presented in [9]. For higher rank
generalization, the integral formulae for correlation functions of Belavin’s (Z/nZ)-symmetric
model were presented in our previous paper [1]. The expression of the spontaneous polarization
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of the (Z/nZ)-symmetric model [10] was also reproduced in [1], on the basis of the vertex
operator approach. To the best of our knowledge, there has not been a developed research of
[7] related to the form factor problem. The aim of the present paper is to give a higher rank
generalization of the bosonization scheme in the eight-vertex model.

The present paper is organized as follows. In section 2 we review the basic definitions of
the (Z/nZ)-symmetric model [2], the corresponding dual face model A(1)

n−1-model [11] and the
vertex-face correspondence. Some detailed definitions of the models concerned are listed in
appendix A. In section 3 we introduce the type I and type II vertex operators of both (Z/nZ)-
symmetric model and the A

(1)
n−1-model, and also introduce the tail operators. Furthermore, we

derive the commutation relations to which those operators should satisfy. In order to obtain
integral formulae for form factors of the (Z/nZ)-symmetric model we construct the free-field
representations of off-diagonal elements of the tail operators, by using those of the type I [12]
and type II [13, 14] vertex operators in the A

(1)
n−1-model in section 4. Useful operator product

expansion (OPE) formulae and commutation relations for basic bosons are given in appendix
B. In section 5 we give some concluding remarks. Among these remarks, a brief proof of
the commutation relations of the type I and the type II vertex operators in the A

(1)
n−1-model is

given in appendix C.

2. Basic definitions

The present section aims to formulate the problem, thereby fixing the notation.

2.1. Theta functions

The Jacobi theta function with two pseudo-periods 1 and τ (Im τ > 0) is defined as follows:

ϑ

[
a

b

]
(v; τ) :=

∑
m∈Z

exp{π√−1(m + a)[(m + a)τ + 2(v + b)]}, (2.1)

for a, b ∈ R. Let n ∈ Z�2 and r ∈ R such that r > n − 1, and also fix the parameter x such
that 0 < x < 1. We will use the abbreviations,

[v] = x
v2

r
−v�x2r (x2v), [v]′ = x

v2

r−1 −v�x2r−2(x2v), (2.2)

where

�q(z) = (z; q)∞(qz−1; q)∞(q; q)∞ =
∑
m∈Z

qm(m−1)/2(−z)m,

(z; q1, . . . , qm)∞ =
∏

i1,...,im�0

(
1 − zq

i1
1 . . . qim

m

)
.

Note that

ϑ

[
1/2

−1/2

](
v

r
,
π

√−1

εr

)
=
√

εr

π
exp
(
−εr

4

)
[v],

where x = e−ε (ε > 0).
For later conveniences we also introduce the following symbols:

rj (v) = z
r−1
r

n−j

n
gj (z

−1)

gj (z)
, gj (z) = {x2n+2r−j−1z}{xj+1z}

{x2n−j+1z}{x2r+j−1z} , (2.3)

r∗
j (v) = z

r
r−1

n−j

n

g∗
j (z

−1)

g∗
j (z)

, g∗
j (z) = {x2n+2r−j−1z}′{xj−1z}′

{x2n−j−1z}′{x2r+j−1z}′ , (2.4)
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χj (v) = z− j (n−j)

n
ρj (z

−1)

ρj (z)
, ρj (z) = (−x2j+1z; x2, x2n)∞(−x2n−2j+1z; x2, x2n)∞

(−xz; x2, x2n)∞(−x2n+1z; x2, x2n)∞
, (2.5)

where z = x2v , 1 � j � n and

{z} = (z; x2r , x2n)∞, {z}′ = (z; x2r−2, x2n)∞. (2.6)

In particular, we denote χ(v) = χ1(v). These factors will appear in the commutation relations
among the type I and type II vertex operators.

The integral kernel for the type I and the type II vertex operators will be given as the
products of the following elliptic functions:

f (v,w) =
[
v + 1

2 − w
][

v − 1
2

] , h(v) = [v − 1]

[v + 1]
, (2.7)

f ∗(v,w) =
[
v − 1

2 + w
]′[

v + 1
2

]′ , h∗(v) = [v + 1]′

[v − 1]′
. (2.8)

In section 4, we use the following identities:
n−1∑
ν=0

n−1∏
j=0
j �=ν

f (vj+1 − vj , 1 − pν + pj )

[pν − pj ]
= 0 (2.9)

and
n−1∑
ν=0

n−1∏
j=0
j �=ν

f ∗(vj − vj+1, 1 − pj + pν)

[pν − pj ]′
= 0, (2.10)

where vn = v + n
2 and

∑n−1
j=0 pj = 0. The former one (2.9) was derived in [12] by applying

Liouville’s second theorem to the following elliptic function:

F(w) =
n−1∏
j=0

[
vj+1 − vj − 1

2 + w − pj

][
vj+1 − vj − 1

2

]
[w − pj ]

.

The latter one (2.10) can be similarly proved.

2.2. (Z/nZ)-symmetric model and its dual face model

Let V = C
n and {εμ}0�μ�n−1 be the standard orthonormal basis with the inner product

〈εμ, εν〉 = δμν . Belavin’s (Z/nZ)-symmetric model [2] is a vertex model on a two-dimensional
square lattice L such that the state variables take the values of (Z/nZ)-spin. The model is
(Z/nZ)-symmetric in a sense that the R-matrix satisfies the following conditions:

(i) R(v)ikj l = 0, unless i + k = j + l, mod n,

(ii) R(v)
i+pk+p

j+pl+p = R(v)ikj l , ∀i, j, k, l, p ∈ Z/nZ.
(2.11)

The R-matrix satisfies the Yang–Baxter equation (YBE)

R12(v1 − v2)R13(v1 − v3)R23(v2 − v3) = R23(v2 − v3)R13(v1 − v3)R12(v1 − v2), (2.12)

where Rij (v) denotes the matrix on V ⊗3, which acts as R(v) on the ith and j th components
and as identity on the other one. As for the elliptic parametrization of R-matrix, see
appendix A.
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The dual face model of the (Z/nZ)-symmetric model is called the A
(1)
n−1-model. This is

a face model on a two-dimensional square lattice L∗, the dual lattice of L, such that the state
variables take the values of the dual space of Cartan subalgebra h∗ of A

(1)
n−1:

h∗ =
n−1⊕
μ=0

Cωμ, (2.13)

where

ωμ :=
μ−1∑
ν=0

ε̄ν , ε̄μ = εμ − 1

n

n−1∑
μ=0

εμ.

The weight lattice P and the root lattice Q of A
(1)
n−1 are usually defined, see appendix A.

An ordered pair (a, b) ∈ h∗2 is called admissible if b = a + ε̄μ, for a certain

μ (0 � μ � n − 1). For (a, b, c, d) ∈ h∗4, let W
[
c d

b a

∣∣v] be the Boltzmann weight of

the A
(1)
n−1 model for the state configuration

[
c d

b a

]
round a face. Here the four states a, b, c and

d are ordered clockwise from the SE corner. In this model W
[
c d

b a

∣∣v] = 0 unless the four
pairs (a, b), (a, d), (b, c) and (d, c) are admissible. Non-zero Boltzmann weights are given
by (A.6)–(A.8), see appendix A.

Among those, the weight (A.7) is different from the corresponding one used in our
previous paper [1] by a minus sign. Accordingly, in the present paper we will use different
definitions of the intertwining vectors (2.15) and the type I vertex operators (4.5), (4.6) from
the corresponding objects of [1] by extra factors of the form (−1)A’s. This difference simply
results from a gauge transformation.

The Boltzmann weights solve the Yang–Baxter equation for the face model [11]:∑
g

W

[
d e

c g

∣∣∣∣ v1

]
W

[
c g

b a

∣∣∣∣ v2

]
W

[
e f

g a

∣∣∣∣ v1 − v2

]

=
∑

g

W

[
g f

b a

∣∣∣∣ v1

]
W

[
d e

g f

∣∣∣∣ v2

]
W

[
d g

c b

∣∣∣∣ v1 − v2

]
. (2.14)

2.3. Vertex-face correspondence

Let

t (v)aa−ε̄μ
= t (v; ε, r)aa−ε̄μ

=
n−1∑
ν=0

ενt
ν(v)aa−ε̄μ

,

tν(v)aa−ε̄μ
=

n−1∏
j=μ+1

(−1)aμj ϑ

[
n
2

1
2 + ν

n

](
v

nr
+

āμ

r
; π

√−1

nεr

) (2.15)

be the intertwining vectors. (See appendix A, concerning the definition of āμ.) Then t (v)aa−ε̄μ
’s

relate the R-matrix of the (Z/nZ)-symmetric model in the principal regime and Boltzmann
weights W of the A

(1)
n−1-model in the so-called regime III (cf figure 1),

R(v1 − v2)t (v1)
d
a ⊗ t (v2)

c
d =

∑
b

t (v1)
c
b ⊗ t (v2)

b
aW

[
c d

b a

∣∣∣∣ v1 − v2

]
. (2.16)

Note that the present intertwining vectors are different from the ones used in [11], which
relate the R-matrix of the (Z/nZ)-symmetric model in the disordered phase and Boltzmann
weights W of the A

(1)
n−1-model in the regime III.

4
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<v1

∨

v2

c

a

d

=
b

<v1

∨
v2

dc

ab

Figure 1. A picture representation of the vertex-face correspondence.

n−1

μ=0
aa

∧

aa

μ
∨

v

= δaa ,
a

a a∧∨
μ

μ
v

= δμμ .

Figure 2. A picture representation of the dual intertwining vectors.

>v1
∧

v2

c

ab

=
d

>v1

∧

v2

dc

ab

Figure 3. Vertex-face correspondence by dual intertwining vectors.

Let us introduce the dual intertwining vectors (see figure 2) satisfying

n−1∑
μ=0

t∗μ(v)a
′

a tμ(v)aa′′ = δa′
a′′ ,

n−1∑
ν=0

tμ(v)aa−ε̄ν
t∗μ′(v)a−ε̄ν

a = δ
μ

μ′ . (2.17)

From (2.16) and (2.17), we have (cf figure 3)

t∗(v1)
b
c ⊗ t∗(v2)

a
bR(v1 − v2) =

∑
d

W

[
c d

b a

∣∣∣∣ v1 − v2

]
t∗(v1)

a
d ⊗ t∗(v2)

d
c . (2.18)

For fixed r > n − 1, let

S(v) = −R(v)|r �→r−1, W ′
[

c d

b a

∣∣∣∣ v] = −W

[
c d

b a

∣∣∣∣ v] ∣∣∣∣
r �→r−1

(2.19)

and

t ′∗(u)ba := t∗(u; ε, r − 1)ba. (2.20)

Then we have

t ′∗(v1)
b
c ⊗ t ′∗(v2)

a
bS(v1 − v2) =

∑
d

W ′
[

c d

b a

∣∣∣∣ v1 − v2

]
t ′∗(v1)

a
d ⊗ t ′∗(v2)

d
c . (2.21)

5
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3. Vertex operator algebra

3.1. Vertex operators for the (Z/nZ)-symmetric model

Let H(i) be the C-vector space spanned by the half-infinite pure tensor vectors of the forms

εμ1 ⊗ εμ2 ⊗ εμ3 ⊗ · · · with μj ∈ Z/nZ, μj = i + 1 − j (mod n) for j � 0. (3.1)

Let H∗(i) be the dual of H(i) spanned by the half-infinite pure tensor vectors of the forms

· · · ⊗ εμ−2 ⊗ εμ−1 ⊗ εμ0 with μj ∈ Z/nZ, μj = i + 1 − j (mod n) for j � 0.

(3.2)

Then introduce the type I vertex operator by the following half-infinite transfer matrix:

Φμ (v1 − v2) = μ
v1

v2 v2 v2 v2

· · ·
(3.3)

Then the operator (3.3) is an intertwiner from H(i) to H(i+1). The type I vertex operators satisfy
the following commutation relation:

�μ(v1)�
ν(v2) =

∑
μ′,ν ′

R(v1 − v2)
μν

μ′ν ′�
ν ′
(v2)�

μ′
(v1). (3.4)

When we consider an operator related to ‘creation–annihilation’ process, we need another
type of vertex operators, the type II vertex operators that satisfy the following commutation
relations:

�∗
ν (v2)�

∗
μ(v1) =

∑
μ′,ν ′

�∗
μ′(v1)�

∗
ν ′(v2)S(v1 − v2)

μ′ν ′
μν , (3.5)

�μ(v1)�
∗
ν (v2) = χ(v1 − v2)�

∗
ν (v2)�

μ(v1). (3.6)

Let

ρ(i) = x2nHCTM : H(i) → H(i), (3.7)

where HCTM is the CTM Hamiltoian defined in [1]. Then we have the homogeneity relation

�μ(v)ρ(i) = ρ(i+1)�μ(v − n), �∗
μ(v)ρ(i) = ρ(i+1)�∗

μ(v − n). (3.8)

3.2. Vertex operators for the A
(1)
n−1-model

For k = a + ρ, l = ξ + ρ and 0 � i � n − 1, let H(i)
l,k be the space of admissible paths

(a0, a1, a2, . . .) such that

a0 = a, aj − aj+1 ∈ {ε̄0, ε̄1, . . . , ε̄n−1} for j = 0, 1, 2, 3, . . .,

aj = ξ + ωi+1−j for j � 0.
(3.9)

Also, let H∗(i)
l,k be the space of admissible paths (. . . , a−2, a−1, a0) such that

a0 = a, aj − aj+1 ∈ {ε̄0, ε̄1, . . . , ε̄n−1}, for j = −1,−2,−3, . . .,

aj = ξ + ωi+1−j for j � 0.
(3.10)

6
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Introduce the type I vertex operator by the following half-infinite transfer matrix:

Φ(v1 − v2)a+ ε̄μ
a =

a

a+ε̄μ

v2 v2 v2

v1
(3.11)

Then the operator (3.11) is an intertwiner from H(i)
l,k to H(i+1)

l,k+ε̄μ
. The type I vertex operators

satisfy the following commutation relation:

�(v1)
c
b�(v2)

b
a =

∑
d

W

[
c d

b a

∣∣∣∣ v1 − v2

]
�(v2)

c
d�(v1)

d
a . (3.12)

The free-field realization of �(v2)
b
a was constructed in [12]. See section 4.2.

The type II vertex operators should satisfy the following commutation relations:

�∗(v2)
ξc

ξd
�∗(v1)

ξd

ξa
=
∑
ξb

�∗(v1)
ξc

ξb
�∗(v2)

ξb

ξa
W ′
[

ξc ξd

ξb ξa

∣∣∣∣ v1 − v2

]
, (3.13)

�(v1)
a′
a �∗(v2)

ξ ′
ξ = χ(v1 − v2)�

∗(v2)
ξ ′
ξ �(v1)

a′
a . (3.14)

Let

ρ
(i)
l,k = Gax

2nH
(i)
l,k , (3.15)

where

Ga =
∏

0�μ<ν�n−1

[aμν].

Then we have the homogeneity relation

�(v)a
′

a

ρ
(i)
a+ρ,l

Ga

= ρ
(i+1)
a′+ρ,l

Ga′
�(v − n)a

′
a , �∗(v)

ξ ′
ξ ρ

(i)
k,ξ+ρ = ρ

(i+1)
k,ξ ′+ρ�

∗(v − n)
ξ ′
ξ . (3.16)

The free-field realization of �∗(v)
ξ ′
ξ was constructed in [13, 14]. See section 4.3.

3.3. Tail operators and commutation relations

In [1] we introduced the intertwining operators between H(i) and H(i)
l,k (k = l + ωi (mod Q)):

T (u)ξa0 =
∞∏

j=0

tμj (−u)
aj

aj+1 : H(i) → H(i)
l,k,

T (u)ξa0 =
∞∏

j=0

t∗μj
(−u)

aj+1
aj

: H(i)
l,k → H(i),

(3.17)

which satisfy

ρ(i) =
(

(x2r−2; x2r−2)∞
(x2r; x2r )∞

)(n−1)(n−2)/2
1

G′
ξ

∑
k≡l+ωi

(mod Q)

T (u)aξρ
(i)
l,kT (u)aξ , (3.18)

and the intertwining relations

7
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Λ(u)ξ a0
ξ a0

=

a0 a1 a2 a3

a0 a1 a2 a3

ξ · · · ξ+ω2 ξ+ω1 ξ

ξ · · · ξ +ω2 ξ +ω1 ξ

∧

∨

−u

∧

∨

∧

∨

∧

∨

∧

∨

∧

∨

Figure 4. Tail operator �(u)
ξ ′a′

0
ξ a0

. The upper (resp. lower) half stands for T (u)ξ
′a′

0 (resp. T (u)ξ a0 ).

T (u)ξb�μ(v) =
∑

a

tμ(v − u)ba�(v)baT (u)ξa, (3.19)

T (u)ξb�(v)ba =
∑

μ

t∗μ(v − u)ab�
μ(v)T (u)ξa. (3.20)

Here, k = a0 + ρ and l = ξ + ρ, and 0 < �(u) < n
2 + 1.

In order to obtain the form factors of the (Z/nZ)-symmetric model, we need the free-
field representations of the tail operator which is off-diagonal with respect to the boundary
conditions (see figure 4)

�(u)
ξ ′a′
ξ a = T (u)ξ

′a′
T (u)ξ a : H(i)

l,k → H(i)
l′k′ , (3.21)

where k = a + ρ, l = ξ + ρ, k′ = a′ + ρ, and l′ = ξ ′ + ρ. Let

L

[
a′

0 a′
1

a0 a1

∣∣∣∣ u] :=
n−1∑
μ=0

t∗μ(−u)a1
a0

tμ(−u)
a′

0

a′
1
. (3.22)

Then we have

�(u)
ξ ′a′

0
ξ a0

=
∞∏

j=0

L

[
a′

j a′
j+1

aj aj+1

∣∣∣∣ u] . (3.23)

Note that

L

[
a′ a′ − ε̄ν

a a − ε̄μ

∣∣∣∣ u] = [u + āμ − ā′
ν]

[u]

∏
j �=μ

[ā′
ν − āj ]

[aμj ]
. (3.24)

It is obvious from (2.17), we have

L

[
a a′

a a′′

∣∣∣∣ u] = δa′
a′′ . (3.25)

We therefore have

�(u)
ξ ′a
ξ a = δ

ξ ′
ξ . (3.26)

From (3.19), (3.20) and the definition of the tail operator (3.21) we have

�(u)
ξ ′c
ξ b�(v)ba =

∑
d

L

[
c d

b a

∣∣∣∣ u − v

]
�(v)cd�(u)

ξ ′d
ξ a . (3.27)

Consider the algebra

�∗(v)
ξ ′
ξ T (u)ξa =

∑
μ

T (u)ξ
′a�∗

μ(v)t ′μ(v − u − �u)
ξ ′
ξ , (3.28)

8
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�∗
μ(v)T (u)ξa =

∑
ξ ′

T (u)ξ ′a�
∗(v)

ξ ′
ξ t ′∗μ(v − u − �u)

ξ

ξ ′ . (3.29)

From these, we have

�∗(v)
ξc

ξd
�(u)

ξd a′
ξa a =

∑
ξb

L′
[

ξc ξd

ξb ξa

∣∣∣∣ u + �u − v

]
�(u)

ξc a′
ξb a �∗(v)

ξb

ξa
, (3.30)

where

L′
[

ξc ξd

ξb ξa

∣∣∣∣ u] = L

[
ξc ξd

ξb ξa

∣∣∣∣ u]∣∣∣∣
r �→r−1

. (3.31)

We should find a representation of �(u)
ξ ′a′
ξ a and fix the constant �u that solves (3.27)

and (3.30).

4. Free-field realization

One of the most standard ways to calculate correlation functions and form factors is the vertex
operator approach [4] on the basis of free-field representation. The free-field representations
for the type I vertex operators of the A

(1)
n−1 model were constructed in [12], in terms of

oscillators introduced in [15, 16]. Those for the type II vertex operators were constructed in
[13, 14], also in terms of oscillators introduced in [15, 16]. It was shown in [17, 18] that the
elliptic algebra Uq,p(ŝlN) provides the Drinfeld realization of the face type elliptic quantum
group Bq,λ(ŝlN) tensored by a Heisenberg algebra. Using these representations we derive the
free-field representation of the tail operator in this section.

4.1. Bosons

Let us consider the bosons B
j
m (1 � j � n − 1,m ∈ Z\{0}) with the commutation relations

[Bj
m, Bk

m′ ] =

⎧⎪⎪⎨⎪⎪⎩
m

[(n − 1)m]x
[nm]x

[(r − 1)m]x
[rm]x

δm+m′,0, (j = k)

−mxsgn(j−k)nm
[m]x

[nm]x

[(r − 1)m]x
[rm]x

δm+m′,0, (j �= k),

(4.1)

where the symbol [a]x stands for (xa − x−a)/(x − x−1). Define Bn
m by

n∑
j=1

x−2jmBj
m = 0.

Then the commutation relations (4.1) holds for all 1 � j, k � n. These oscillators were
introduced in [15, 16].

For α, β ∈ h∗ let us define the zero mode operators Pα,Qβ with the commutation relations

[Pα,
√−1Qβ] = 〈α, β〉, [

Pα, Bj
m

] = [Qβ,Bj
m

] = 0.

We will deal with the bosonic Fock spaces Fl,k, (l, k ∈ h∗) generated by B
j
−m(m > 0)

over the vacuum vectors |l, k〉 :

Fl,k = C
[{

B
j

−1, B
j

−2, . . .
}

1�j�n

]|l, k〉,
where

Bj
m|l, k〉 = 0(m > 0),

Pα|l, k〉 = 〈α, β1k + β2l〉|l, k〉,
|l, k〉 = exp(

√−1(β1Qk + β2Ql))|0, 0〉,
9
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where β1 and β2 are defined by

t2 − β0t − 1 = (t − β1)(t − β2), β0 = 1√
r(r − 1)

, β1 < β2. (4.2)

4.2. Type I vertex operators

Let us define the basic operators for j = 1, . . . , n − 1

U−αj
(v) = exp

(−β1(
√−1Qαj

+ Pαj
log z)

)
: exp

⎛⎝∑
m�=0

1

m

(
Bj

m − Bj+1
m

)
(xj z)−m

⎞⎠ :, (4.3)

Uωj
(v) = exp

(
β1(

√−1Qωj
+ Pωj

log z)
)

: exp

⎛⎝−
∑
m�=0

1

m

j∑
k=1

x(j−2k+1)mBk
mz−m

⎞⎠ :, (4.4)

where β1 = −
√

r−1
r

and z = x2v as usual. For some useful OPE formulae and commutation
relations, see appendix B.

In the following we set

πμ =
√

r(r − 1)Pε̄μ
, πμν = πμ − πν = rLμν − (r − 1)Kμν.

The operators Kμν , Lμν and πμν act on Fl,k as scalars 〈εμ − εν, k〉, 〈εμ − εν, l〉 and
〈εμ − εν, rl − (r − 1)k〉, respectively. In what follows we often use the symbols

GK =
∏

0�μ<ν�n−1

[Kμν], G′
L =

∏
0�μ<ν�n−1

[Lμν]′.

For 0 � μ � n − 1 define the type I vertex operator [12] by

φμ(v0) =
∮

C

μ∏
j=1

dzj

2π
√−1zj

Uω1(v0)U−α1(v1) · · · U−αμ
(vμ)

μ−1∏
j=0

f (vj+1− vj ,Kjμ)

n−1∏
j=0
j �=μ

[Kjμ]−1

(4.5)

= (−1)μ
∮

C

μ∏
j=1

dzj

2π
√−1zj

U−αμ
(vμ) · · · U−α1(v1)Uω1(v0)

×
μ−1∏
j=0

f (vj − vj+1, 1 − Kjμ)

n−1∏
j=0
j �=μ

[Kjμ]−1, (4.6)

where zj = x2vj . Considering the factors f (vj+1 − vj ,Kjμ)’s together with the OPE
formulae (B.3) and (B.5), the expression (4.5) has poles at zj = x±(1+2kr)zj−1 (k ∈ Z�0).
The integral contour C for zj-integration should be chosen such that all integral variables lie in
the common convergence domain; i.e. the contour C encircles the poles at zj = x1+2krzj−1 (k ∈
Z�0), but not the poles at zj = x−1−2krzj−1 (k ∈ Z�0).

Note that

φμ(v) : Fl,k −→ Fl,k+ε̄μ
. (4.7)

These type I vertex operators satisfy the following commutation relations on Fl,k:

φμ1(v1)φμ2(v2) =
∑

εμ1 +εμ2 =εμ′
1

+εμ′
2

W

[
a + ε̄μ1 + ε̄μ2 a + ε̄μ′

1

a + ε̄μ2 a

∣∣∣∣ v1 − v2

]
φμ′

2
(v2)φμ′

1
(v1). (4.8)

10
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We thus denote the operator φμ(v) by �(v)
a+ε̄μ

a on the bosonic Fock space Fl,a+ρ .
Dual vertex operators are likewise defined as follows:

φ∗
μ(v) = (−1)n−1−μc−1

n

∮ n−1∏
j=μ+1

dzj

2π
√−1zj

Uωn−1

(
v − n

2

)
U−αn−1(vn−1) · · · U−αμ+1(vμ+1)

×
n−1∏

j=μ+1

f (vj − vj+1,Kμj )

= c−1
n

∮ n−1∏
j=μ+1

dzj

2π
√−1zj

U−αμ+1(vμ+1) · · · U−αn−1(vn−1)Uωn−1

(
v − n

2

)

×
n−1∏

j=μ+1

f (vj+1 − vj , 1 − Kμj ). (4.9)

Here vn = v − n
2 , and

cn = x
r−1
r

n−1
2n

gn−1(x
n)

(x2; x2r )n∞(x2r; x2r )2n−3∞
,

where gn−1(z) is defined by (2.3). The integral contour for zj-integration encircles the
poles at zj = x1+2krzj+1 (k ∈ Z�0), but not the poles at zj = x−1−2krzj+1 (k ∈ Z�0), for
μ + 1 � j � n − 1. Note that

φ∗
μ(v) : Fl,k −→ Fl,k−ε̄μ

. (4.10)

The operators φμ(v) and φ∗
μ(v) are dual in the following sense [12]:

n−1∑
μ=0

φ∗
μ(v)φμ(v) = 1. (4.11)

In [1] we obtained the free-field representation of �(u)
ξ a′
ξ a satisfying (3.27) for ξ ′ = ξ :

�(u)
ξ a−ε̄μ

ξ a−ε̄ν
= GK

∮ ν∏
j=μ+1

dzj

2π
√−1zj

U−αμ+1(vμ+1) · · · U−αν
(vν)

×
ν−1∏
j=μ

f (vj+1 − vj ,Kjν)G
−1
K , (4.12)

where vμ = u and μ < ν.

4.3. Type II vertex operators

Let us define the basic operators for j = 1, . . . , n − 1

V−αj
(v) = exp

(−β2(
√−1Qαj

+ Pαj
log z)

)
: exp

⎛⎝−
∑
m�=0

1

m

(
Aj

m − Aj+1
m

)
(xj z)−m

⎞⎠ :, (4.13)

Vωj
(v) = exp

(
β2(

√−1Qωj
+ Pωj

log z
)

: exp

⎛⎝∑
m�=0

1

m

j∑
k=1

x(j−2k+1)mAk
mz−m

⎞⎠ :, (4.14)

11
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where β2 =
√

r
r−1 and z = x2v , and

Aj
m = (−1)m

[rm]x
[(r − 1)m]x

Bj
m. (4.15)

For some useful OPE formulae and commutation relations, see appendix B.
For 0 � μ � n − 1 define the type II vertex operator [13, 14]1 by

ψ∗
μ(v0) =

∮
C ′

μ∏
j=1

dzj

2π
√−1zj

Vω1(v0)V−α1(v1) · · · V−αμ
(vμ)

μ−1∏
j=0

f ∗(vj+1 − vj , Ljμ) (4.16)

= (−1)μ
∮

C ′

μ∏
j=1

dzj

2π
√−1zj

V−αμ
(vμ) · · · V−α1(v1)Vω1(v0)

×
μ−1∏
j=0

f ∗(vj − vj+1, 1 − Ljμ), (4.17)

where zj = x2vj . Considering the factors f ∗(vj+1 − vj , Ljμ)’s together with the OPE
formulae (B.9) and (B.11), the expression (4.16) has poles at zj = x±(−1+2k(r−1))zj−1 (k ∈
Z�0). The integral contour C ′ for zj-integration should be chosen such that C ′ encircles the
poles at zj = x−1+2k(r−1)zj−1 (k ∈ Z�0), but not the poles at zj = x1−2k(r−1)zj−1 (k ∈ Z�0).

Note that

ψ∗
μ(v) : Fl,k −→ Fl+ε̄μ,k. (4.18)

These type II vertex operators satisfy the following commutation relations on Fl,k:

ψ∗
μ1

(v1)ψ
∗
μ2

(v2) =
∑

εμ1 +εμ2 =εμ′
1

+εμ′
2

W ′
[
ξ + ε̄μ1 + ε̄μ2 ξ + ε̄μ2

ξ + ε̄μ′
1

ξ

∣∣∣∣ v2 − v1

]
ψ∗

μ′
2
(v2)ψ

∗
μ′

1
(v1).

(4.19)

We thus denote the operator ψ∗
μ(v) by �∗(v)

ξ+ε̄μ

ξ on the bosonic Fock space Fξ+ρ,k .
Dual vertex operators are likewise defined as follows:

ψμ(v) = (−1)n−1−μc′
n
−1
∮ n−1∏

j=μ+1

dzj

2π
√−1zj

Vωn−1

(
v − n

2

)
V−αn−1(vn−1) · · · V−αμ+1(vμ+1)

×
n−1∏

j=μ+1

f ∗(vj − vj+1, Lμj )

n−1∏
j=0
j �=μ

[1]′

[Ljμ]′

= c′
n
−1
∮ n−1∏

j=μ+1

dzj

2π
√−1zj

V−αμ+1(vμ+1) · · · V−αn−1(vn−1)Vωn−1

(
v − n

2

)

×
n−1∏

j=μ+1

f ∗(vj+1 − vj , 1 − Lμj )

n−1∏
j=0
j �=μ

[1]′

[Ljμ]′
. (4.20)

1 To be precise, the integral contour for ψ∗
μ(v0) of [13] is different from that of [14]. The contour should be chosen

in such a way that all integral variables lie in the convergence domain of the integral formula (4.16). In the present
paper we adopt the contour of [14].

12
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Here vn = v − n
2 , and

c′
n = x

r(n−1)

2(r−1)

(
(x2r; x2r−2)∞

(x2r−2; x2r−2)∞

)n

g∗
n−1(x

n),

where g∗
n−1(z) is defined by (2.4). The integral contour for zj-integration encircles the poles

at zj = x−1+2k(r−1)zj+1 (k ∈ Z�0), but not the poles at zj = x1−2k(r−1)zj+1 (k ∈ Z�0), for
μ + 1 � j � n − 1. Note that

ψμ(v) : Fl,k −→ Fl−ε̄μ,k. (4.21)

The operators ψμ(v) and ψ∗
μ(v) are dual in the following sense [14]:

ψμ(v)ψ∗
ν (v′) = δμν

1

1 − z′/z
+ (regular terms at v = v′). (4.22)

For later convenience, we also introduce another type of basic operators:

W−αj
(v) = exp(−β0(

√−1Qαj
+ Pαj

log(−1)rz)) : exp

⎛⎝−
∑
m�=0

1

m
(Oj

m − Oj+1
m )(xj z)−m

⎞⎠ :,

(4.23)

where β0 = β1 + β2 = 1√
r(r − 1)

, (−1)r := exp(π
√−1r) and

Oj
m = [m]x

[(r − 1)m]x
Bj

m. (4.24)

Concerning useful OPE formulae and commutation relations, see appendix B.

4.4. Free-field realization of tail operators

Consider (3.30) for (ξa, ξd, ξc) = (ξ, ξ, ξ + ε̄n−1), and (a, a′) → (a + ε̄n−2, a + ε̄n−1):

�∗(v)
ξ+ε̄n−1
ξ �(u)

ξ a+ε̄n−1
ξ a+ε̄n−2

=
n−1∑
μ=0

L′
[
ξ + ε̄n−1 ξ

ξ + ε̄μ ξ

∣∣∣∣ u + �u − v

]
�(v)

ξ+ε̄n−1 a+ε̄n−1
ξ+ε̄μ a+ε̄n−2

�∗(v)
ξ+ε̄μ

ξ .

(4.25)

This equation can be rewritten as follows:

�∗(v)
ξ+ε̄n−1
ξ �(u)

ξ a+ε̄n−1
ξ a+ε̄n−2

− �(u)
ξ+ε̄n−1 a+ε̄n−1
ξ+ε̄n−1 a+ε̄n−2

�∗(v)
ξ+ε̄n−1
ξ

=
n−2∑
μ=0

[u + �u − v + ξμn−1]′

[u + �u − v]′
∏
j �=μ

[ξn−1 j + 1]′

[ξμj + 1]′
�(v)

ξ+ε̄n−1 a+ε̄n−1
ξ+ε̄μ a+ε̄n−2

�∗(v)
ξ+ε̄μ

ξ . (4.26)

Since the tail operators on the LHS of (4.26) are diagonal components with respect to the
ground state sectors, the free-field representation (4.12) can be used. Thus, we have

LHS of (4.26) = (−1)n−1GK

∮
C

dz′

2π
√−1z′

∮
C ′

n−1∏
j=1

dzj

2π
√−1zj

[V−αn−1(vn−1), U−αn−1(v
′)]

× V−αn−2(vn−2) · · · V−α1(v1)Vω1(v)f (v′ − u,Kn−2 n−1)

×
n−2∏
j=0

f ∗(vj − vj+1, 1 − Ljn−1)G
−1
K , (4.27)

13
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where zj = x2vj and z′ = x2v′
. From (B.29) the integral with respect to zn−1 of (4.27) can be

evaluated by the residues at zn−1 = −x±1z′. Then the result is

LHS|Fξ+ρ,a+ε̄n−2+ρ
= (−1)n−1

x−1 − x
GK

∮
C

dz′

2π
√−1z′

∮
C ′

n−2∏
j=1

dzj

2π
√−1zj

×
(
F
(
v′ +

r

2

)
W−αn−1

(
v′ +

r

2

)
− F

(
v′ − r

2

)
W−αn−1

(
v′ − r

2

))
×V−αn−2(vn−2) · · · V−α1(v1)Vω1(v)

n−3∏
j=0

f ∗(vj − vj+1, 1 − ξjn−1)G
−1
K

= (−1)n

x−1 − x
GK

(∮
x−rC

−
∮

xrC

)
dz′

2π
√−1z′

∮
C ′

n−2∏
j=1

dzj

2π
√−1zj

F (v′)W−αn−1(v
′)

×V−αn−2(vn−2) · · · V−α1(v1)Vω1(v)

n−3∏
j=0

f ∗(vj − vj+1, 1 − ξjn−1)G
−1
K , (4.28)

where

F(v′) =
[
vn−2 − v′ + r

2 − π
√−1
2ε

− ξn−2 n−1
]′[

vn−2 − v′ + r
2 − π

√−1
2ε

]′
[
v′ − u − r+1

2 − an−2 n−1
][

v′ − u − r+1
2

] . (4.29)

The integral with respect to z′ of (4.28) can be evaluated by the residues at z′ = −xrzn−2 and
z′ = x−r+1+2u. The former residue vanishes because of (B.40)2. Thus, we have

(4.28) = (−1)n
∮

C ′

n−2∏
j=1

dzj

2π
√−1zj

W−αn−1

(
u − r − 1

2

)
V−αn−2(vn−2) · · · V−α1(v1)Vω1(v)

×
n−2∏
j=0

f ∗(vj − vj+1, 1 − ξj n−1)
[an−2 n−1]

(x−1 − x)(x2r; x2r )3∞

Ga+ε̄n−1

Ga+ε̄n−2

. (4.30)

In (4.30), we should read as vn−1 = u + π
√−1
2ε

. Equating (4.30) and the RHS of (4.26) and
using the identity (2.10), we find the free-field representation of the tail operator

�(v)
ξ+ε̄n−1 a+ε̄n−1
ξ+ε̄μ a+ε̄n−2

= (−1)n−μ[an−2 n−1]

(x−1 − x)(x2r ; x2r )3∞

[ξμn−1 − 1]′

[1]′
GKG′

L
−1

×
∮

C ′

n−2∏
j=μ+1

dzj

2π
√−1zj

W−αn−1

(
u − r − 1

2

)
V−αn−2(vn−2) · · · V−αμ+1(vμ+1)

×
n−2∏

j=μ+1

f ∗(vj − vj+1, Lμj )G
−1
K G′

L, (4.31)

for 0 � μ � n − 2 with �u = − n−1
2 + π

√−1
2ε

and vn−1 = u + π
√−1
2ε

.

Let us return to equation (3.30) with �u = − n−1
2 + π

√−1
2ε

. By taking an appropriate linear
combination of (3.30), we have the following relation:

n−1∑
μ=0

Aμ�∗(v)
ξ ′
ξ ′−ε̄μ

�(u)
ξ ′−ε̄μ a′

ξ a = B�(u)
ξ ′ a′
ξ+ε̄0 a�

∗(v)
ξ+ε̄0
ξ . (4.32)

2 When n = 2 we use (B.41).
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Here, the coefficients are

Aμ =
n−1∏
j=0
j �=μ

1

[ξ ′
μj ]′

[
u − v − n−1

2 + π
√−1
2ε

+ ξ̄ ′
μ − ξ̄0 + 1

n

]′[
u − v − n−1

2 + π
√−1
2ε

+ ξ̄ ′
0 − ξ̄0 + 1

n

]′
[
ξ̄ ′

0 − ξ̄0 + 1
n

]′[
ξ̄ ′
μ − ξ̄0 + 1

n

]′ ,
B =

[
u − v − n−3

2 + π
√−1
2ε

]′[
u − v − n−3

2 + π
√−1
2ε

+ ξ̄ ′
0 − ξ̄0 + 1

n

]′ n−1∏
j=1

[ξ ′
j0]′[

ξ̄ ′
j − ξ̄0 + 1

n

]′
[ξ0j + 1]′

.

Consider the product

Vω1(v)V−α1(v1) · · · V−αn−2(vn−2)W−αn−2

(
u − r − 1

2

)
= : Vω1(v)V−α1(v1) · · · V−αn−2(vn−2)W−αn−2

(
u − r − 1

2

)
:

×
n−2∏
j=1

z
− r

r−1
j−1

(
x2r−1 zj

zj−1
; x2r−2

)
∞(

x−1 zj

zj−1
; x2r−2

)
∞

· z
− 1

r−1
n−2

(− x x2u

zn−2
; x2r−2

)
∞(− x−1 x2u

zn−2
; x2r−2

)
∞

. (4.33)

The convergence domain of (4.33) is that x−1|zj | < |zj−1| (1 � j � n − 2) and
| − x2u−1| < |zn−2|. Thus, each term of the LHS of (4.32) has a pole at z = −x1−nx2u

(v = u − n−1
2 + π

√−1
2ε

) because pinching occurs at the pole. On the other hand, the RHS of

(4.32) does not have such a pole. Hence, the singularities at v = u − n−1
2 + π

√−1
2ε

on the RHS
of (4.32) cancel each other:

n−1∑
μ=0

n−1∏
j=0
j �=μ

1

[ξ ′
μj ]′

�∗
(

u − n − 1

2
+

π
√−1

2ε

)ξ ′

ξ ′−ε̄μ

�(u)
ξ ′−ε̄μ a′

ξ a = O(1). (4.34)

From (4.34) and (2.10) we find the representation

�(u)
ξ ′−ε̄μ a′

ξ a =
∮

C ′

n−1∏
j=μ+1

f ∗(vj − vj+1, Ljμ)
dzj

2π
√−1zj

×V−αμ+1(vμ+1) · · · V−αn−1(vn−1) · �(u)
ξ ′−ε̄n−1 a′
ξ a , (4.35)

where vn = u + 1
2 + π

√−1
2ε

.
In a similar way to derive (4.32) from (3.30), we can derive the following relation from

(3.27):

n−1∑
μ=0

�(u)
ξ ′ a′
ξ a+ε̄μ

�(v)
a+ε̄μ

a

n−1∏
j=0
j �=μ

[aμj + 1]

[aμj ]

[
u − v + ā′

ν − āμ +
1

n

] n−1∏
j=0
j �=ν

[
ā′

j − āμ +
1

n

]

= [u − v + 1]
n−1∏
j=0
j �=ν

[a′
ν j ]�(v)a

′
a′−ε̄ν

�(u)
ξ ′ a′−ε̄ν

ξ a . (4.36)

Let v = u + 1 and take the sum over 0 � ν � n − 1. Then we have
n−1∑
μ=0

Aμ(a, a′)�(u)
ξ ′ a′
ξ a+ε̄μ

�(u + 1)
a+ε̄μ

a

n−1∏
j=0
j �=μ

[(a + ε̄μ)μj ]

[aμj ]
= 0, (4.37)
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where

Aμ(a, a′) =
n−1∑
ν=0

n−1∏
j=0

[(a′ − ε̄ν)j − āμ].

From (4.37) and (2.9), we obtain the expression

�(u)
ξ ′ a′
ξ a+ε̄μ

= �(u)
ξ ′ a′
ξ a+ε̄n−1

(−1)n−1−μGK

∮
C

n−1∏
j=μ+1

dzj

2π
√−1zj

U−αn−1(vn−1) · · · U−αμ+1(vμ+1)

×
n−1∏

j=μ+1

f (vj − vj+1,Kμ j )G
−1
K

An−1(a, a′)
Aμ(a, a′)

, (4.38)

where vn = u − n−2
2 .

Combining equations (4.31), (4.35) and (4.38), we can construct a free-field representation
of any �(u)

ξ ′ a′
ξ a , in principle.

4.5. Form factors

Form factors of the (Z/nZ)-symmetric model are defined as matrix elements of some local
operators. Consider the local operator

O = E
(1)

μ1μ
′
1
· · · E(N)

μNμ′
N
, (4.39)

where E
(j)

μj μ
′
j

is the matrix unit on the j th site. The free-field representation of O is given by

Ô = �∗
μ1

(u1) · · · �∗
μN

(uN)�μ′
N (uN) · · · �μ′

1(u1). (4.40)

The corresponding form factors with m ‘charged’ particles are given by

F (i)
m (O; v1, . . . , vm)ν1···νm

= 1

χ(i)
TrH(i)

(
�∗

ν1
(v1) · · · �∗

νm
(vm)Ôρ(i)

)
, (4.41)

where

χ(i) = TrH(i) ρ(i) = (x2n; x2n)∞
(x2; x2)∞

(4.42)

and m ≡ 0 (mod n). Note that the local operator (4.39) commutes with the type II vertex
operators due to of (4.40) and (3.6).

By using (3.18), (3.28) and (3.19), we can rewrite (4.41) as follows:

F (i)
m (O; v1, . . . , vm)ν1···νm

= 1

χ(i)

∑
ξ1,···,ξm

t ′∗ν1

(
v1 − u +

n − 1

2
− π

√−1

2ε

)
ξ1
ξ · · ·

× t ′∗νm

(
vm − u +

n − 1

2
− π

√−1

2ε

)
ξm

ξm−1

×
∑

k≡l+ωi

(mod Q)

∑
a1···aN

a′
1···a′

N

t∗μ1
(u1 − u)aa1

· · · t∗μN
(uN − u)aN−1

aN
tμ

′
N (uN − u)

aN

a′
N

· · · tμ′
1(u1 − u)

a′
2

a′
1

× TrH(i)
l,k

(
�∗(v1)

ξ
ξ1

· · · �∗(vm)
ξm−1
ξm

�∗(u1)
a
a1

· · ·�∗(uN)aN−1
aN

�(uN)
aN

a′
N

· · · �(u1)
a′

2

a′
1
�(u)

ξma′
1

ξa

ρ
(i)
l,k

bl

)
, (4.43)
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where k = a + ρ, l = ξ + ρ and

bl =
(

(x2r; x2r )∞
(x2r−2; x2r−2)∞

)(n−1)(n−2)/2

G′
ξ . (4.44)

Free-field representations of the tail operators �’s have been constructed in the present paper,
with the exception of all the other operators �’s, �∗’s and �∗’s in (4.43), were given in
[1, 12, 14]. In principle, integral formulae can be therefore obtained for form factors of the
(Z/nZ)-symmetric model.

5. Concluding remarks

In this paper we present a vertex operator approach for form factors of the (Z/nZ)-symmetric
model. For that purpose we constructed the free-field representations of the tail operators
�

ξ ′a′
ξ a , the nonlocal operators which relate the physical quantities of the (Z/nZ)-symmetric

model and the A
(1)
n−1-model. As a result, we can obtain the integral formulae for form factors

of the (Z/nZ)-symmetric model, in principle.
Our approach is based on some assumptions. We assumed that the vertex operator

algebra (3.18)–(3.20) and (3.28), (3.29) correctly describes the intertwining relation between
the (Z/nZ)-symmetric model and the A

(1)
n−1-model. We also assumed that the free-field

representations (4.31), (4.35), (4.38) provide relevant representations of the vertex operator
algebra. As a consistency check of our bosonization scheme, it is thus important to derive
closed expressions for form factors of some simple local operators by performing the integrals
on (4.43). We wish to address the problem in a separate paper.

Before ending the present paper, we would like to add one more point. In order to find
the free-field representations of the tail operators (4.31), we used the correct commutation
relation (B.29). In our previous paper [14] we proved (3.14) by using the commutativity of
U−αj

(v) and V−αj
(v′), instead of (B.29). In appendix C we thus prove (3.14) on the basis of

(B.29).
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Appendix A. Definitions of the models concerned

A.1. Belavin’s vertex model

In the original papers [2, 3], the R-matrix in the disordered phase is given. For the purpose of
this paper, we need the following R-matrix:

R(v) = [1]

[1 − v]
r1(v)R(v),

R(v)ikj l =
h(v)ϑ

[ 1
2

1
2 + k−i

n

] (
1−v
nr

; π
√−1
nεr

)
ϑ

[ 1
2

1
2 + j−k

n

] (
v
nr

; π
√−1
nεr

)
ϑ

[ 1
2

1
2 + j−i

n

] (
1
nr

; π
√−1
nεr

)δi+k

j+l (mod n)
,

(A.1)

where r1(v) is defined by (2.3), and

h(v) =
n−1∏
j=0

ϑ

[ 1
2

1
2 + j

n

](
v

nr
; π

√−1

nεr

)/ n−1∏
j=1

ϑ

[ 1
2

1
2 + j

n

](
0; π

√−1

nεr

)
.
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We assume that the parameters v, ε and r lie in the so-called principal regime:

ε > 0, r > n − 1, 0 < v < 1. (A.2)

Note that the weights (A.1) reproduce those of the eight-vertex model in the principal regime
when n = 2 [5].

A.2. The weight lattice and the root lattice of A
(1)
n−1

Let V = C
n and {εμ}0�μ�n−1 be the standard orthonormal basis as before. The weight lattice

of A
(1)
n−1 is defined as follows:

P =
n−1⊕
μ=0

Zε̄μ, (A.3)

where

ε̄μ = εμ − ε, ε = 1

n

n−1∑
μ=0

εμ.

We denote the fundamental weights by ωμ (1 � μ � n − 1):

ωμ =
μ−1∑
ν=0

ε̄ν ,

and also denote the simple roots by αμ (1 � μ � n − 1):

αμ = εμ−1 − εμ = ε̄μ−1 − ε̄μ.

The root lattice of A
(1)
n−1 is defined as follows:

Q =
n−1⊕
μ=1

Zαμ. (A.4)

For a ∈ P we set

aμν = āμ − āν, āμ = 〈a + ρ, εμ〉 = 〈a + ρ, ε̄μ〉, ρ =
n−1∑
μ=1

ωμ. (A.5)

In this paper we not only admit the case a ∈ P , but also the case a ∈ h∗ :=
Cω0 ⊕ Cω1 ⊕ · · · ⊕ Cωn−1. For r > n − 1, let

∑n−1
μ=0 kμ = r , where a + ρ = ∑n−1

μ=0 kμωμ;
then we denote a ∈ h∗

r−n.

A.3. The A
(1)
n−1 face model

An ordered pair (a, b) ∈ h∗2
r−n is called admissible if b = a + ε̄μ, for a certain

μ (0 � μ � n − 1). Non-zero Boltzmann weights are parametrized in terms of the elliptic
theta function of the spectral parameter v as follows:

W

[
a + 2ε̄μ a + ε̄μ

a + ε̄μ a

∣∣∣∣ v] = r1(v), (A.6)

W

[
a + ε̄μ + ε̄ν a + ε̄μ

a + ε̄ν a

∣∣∣∣ v] = r1(v)
[v][aμν + 1]

[1 − v][aμν]
(μ �= ν), (A.7)

W

[
a + ε̄μ + ε̄ν a + ε̄μ

a + ε̄μ a

∣∣∣∣ v] = r1(v)
[1][v + aμν]

[1 − v][aμν]
(μ �= ν), (A.8)

where r1(v) is defined by (2.3). In this paper we consider the so-called Regime III in the
model, i.e. 0 < v < 1.
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Appendix B. OPE formulae and commutation relations

In this appendix we list some useful formulae for the basic bosons. In what follows we denote
z = x2v , z′ = x2v′

.
First, useful OPE formulae are

Uω1(v)Uωj
(v′) = z

r−1
r

n−j

n gj (z
′/z) : Uω1(v)Uωj

(v′) :, (B.1)

Uωj
(v)Uω1(v

′) = z
r−1
r

n−j

n gj (z
′/z) : Uωj

(v)Uω1(v
′) :, (B.2)

Uωj
(v)U−αj

(v′) = z− r−1
r

(x2r−1z′/z; x2r )∞
(xz′/z; x2r )∞

: Uωj
(v)U−αj

(v′) :, (B.3)

U−αj
(v)Uωj

(v′) = z− r−1
r

(x2r−1z′/z; x2r )∞
(xz′/z; x2r )∞

: U−αj
(v)Uωj

(v′) :, (B.4)

U−αj
(v)U−αj±1(v

′) = z− r−1
r

(x2r−1z′/z; x2r )∞
(xz′/z; x2r )∞

: U−αj
(v)U−αj±1(v

′) :, (B.5)

U−αj
(v)U−αj

(v′) = z
2(r−1)

r

(
1 − z′

z

)
(x2z′/z; x2r )∞

(x2r−2z′/z; x2r )∞
: U−αj

(v)U−αj
(v′) :, (B.6)

Vω1(v)Vωj
(v′) = z

r
r−1

n−j

n g∗
j (z

′/z) : Vω1(v)Vωj
(v′) :, (B.7)

Vωj
(v)Vω1(v

′) = z
r

r−1
n−j

n g∗
j (z

′/z) : Vωj
(v)Vω1(v

′) :, (B.8)

Vωj
(v)V−αj

(v′) = z− r
r−1

(x2r−1z′/z; x2r−2)∞
(x−1z′/z; x2r−2)∞

: Vωj
(v)V−αj

(v′) :, (B.9)

V−αj
(v)Vωj

(v′) = z− r
r−1

(x2r−1z′/z; x2r−2)∞
(x−1z′/z; x2r−2)∞

: V−αj
(v)Vωj

(v′) :, (B.10)

V−αj
(v)V−αj±1(v

′) = z− r
r−1

(x2r−1z′/z; x2r−2)∞
(x−1z′/z; x2r−2)∞

: V−αj
(v)V−αj±1(v

′) :, (B.11)

V−αj
(v)V−αj

(v′) = z
2r

r−1

(
1 − z′

z

)
(x−2z′/z; x2r−2)∞
(x2rz′/z; x2r−2)∞

: V−αj
(v)V−αj

(v′) :, (B.12)

Vωj
(v)Uωj

(v′) = z− j (n−j)

n ρj (z
′/z) : Vω1(v)Uωj

(v′) :, (B.13)

Uωj
(v)Vωj

(v′) = z− j (n−j)

n ρj (z
′/z) : Uωj

(v)Vωj
(v′) :, (B.14)

Vωj
(v)U−αj

(v′) = z

(
1 +

z′

z

)
: Vωj

(v)U−αj
(v′) : = U−αj

(v′)Vωj
(v), (B.15)

Uωj
(v)V−αj

(v′) = z

(
1 +

z′

z

)
: Uωj

(v)V−αj
(v′) : = V−αj

(v′)Uωj
(v), (B.16)

V−αj
(v)U−αj±1(v

′) = z

(
1 +

z′

z

)
: V−αj

(v)U−αj±1(v
′) : = U−αj±1(v

′)V−αj
(v), (B.17)

V−αj
(v)U−αj

(v′) = : V−αj
(v)U−αj

(v′) :

z2(1 + xz′
z

)(1 + x−1z′
z

)
, (B.18)

U−αj
(v)V−αj

(v′) = : U−αj
(v)V−αj

(v′) :

z2(1 + xz′
z

)(1 + x−1z′
z

)
, (B.19)
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where gj (z), g∗
j (z) and ρj (z) are defined by (2.3), (2.4) and (2.5). From these, we obtain the

following commutation relations:

Uω1(v)Uωj
(v′) = rj (v − v′)Uωj

(v′)Uω1(v), (B.20)

U−αj
(v)Uωj

(v′) = −f (v − v′, 0)Uωj
(v′)U−αj

(v), (B.21)

U−αj
(v)U−αj±1(v

′) = −f (v − v′, 0)U−αj±1(v
′)U−αj

(v), (B.22)

U−αj
(v)U−αj

(v′) = h(v − v′)U−αj
(v′)U−αj

(v), (B.23)

Vω1(v)Vωj
(v′) = r∗

j (v − v′)Vωj
(v′)Vω1(v), (B.24)

V−αj
(v)Vωj

(v′) = −f ∗(v − v′, 0)Vωj
(v′)V−αj

(v), (B.25)

V−αj
(v)V−αj±1(v

′) = −f ∗(v − v′, 0)V−αj±1(v
′)V−αj

(v), (B.26)

V−αj
(v)V−αj

(v′) = h∗(v − v′)V−αj
(v′)V−αj

(v), (B.27)

Uωj
(v)Vωj

(v′) = χj (v − v′)Vωj
(v′)Uωj

(v), (B.28)

[V−αj
(v), U−αj

(v′)] = δ
(

z
−xz′
)− δ

(
z′

−xz

)
(x−1 − x)zz′ : V−αj

(v)U−αj
(v′) :, (B.29)

where rj (v), r∗
j (v), χj (v), f (v,w), h(v), f ∗(v,w) and h∗(v) are defined by (2.3), (2.4), (2.5),

(2.7) and (2.8), and the δ-function is defined by the following formal power series:

δ(z) =
∑
n∈Z

zn.

The commutation relation (B.29) can be derived from (B.18), (B.19) and the identity

1

z2
(
1 + xz′

z

)(
1 + x−1z′

z

) − 1

z′2(1 + xz
z′
)(

1 + x−1z
z′
) = δ

(
z

−xz′
)− δ

(
z′

−xz

)
(x−1 − x)zz′ .

The relation (B.29) can be practically understood as follows. Let us compare the integrals∮
dz

2π
√−1

V−αj
(v)U−αj

(v′)F (v, v′), (B.30)

and ∮
dz

2π
√−1

U−αj
(v′)V−αj

(v)F (v, v′), (B.31)

where F(u, v) is an appropriate function. Note that the normal order product expansion (B.18)
is valid for |z| > |−x±1z′| while (B.19) is valid for |z′| > |−x±1z|. Thus, the integral contour
of (B.30) encircles the poles −x±1z′, but that of (B.31) does not encircle them. The difference
between (B.30) and (B.31) can be therefore evaluated by the residues at z = −x±1z′.

Finally, we list the OPE formulae for W−αj
(v) and other basic operators:

W−αj
(v)V−αj±1(v

′) = −(−z)−
1

r−1
(−xrz′/z; x2r−2)∞

(−xr−2z′/z; x2r−2)∞
: W−αj

(v)V−αj±1(v
′) :, (B.32)

V−αj±1(v)W−αj
(v′) = z− 1

r−1
(−xrz′/z; x2r−2)∞

(−xr−2z′/z; x2r−2)∞
: V−αj±1(v)W−αj

(v′) :, (B.33)

Vωj
(v)W−αj

(v′) = z− 1
r−1

(−xrz′/z; x2r−2)∞
(−xr−2z′/z; x2r−2)∞

: Vωj
(v)W−αj

(v′) :, (B.34)
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W−αj
(v)Vωj

(v′) = −(−z)−
1

r−1
(−xrz′/z; x2r−2)∞

(−xr−2z′/z; x2r−2)∞
: W−αj

(v)Vωj
(v′) :, (B.35)

U−αj±1(v)W−αj
(v′) = z

1
r
(xr−1z′/z; x2r )∞
(xr+1z′/z; x2r )∞

: U−αj±1(v)W−αj
(v′) :, (B.36)

W−αj
(v)U−αj±1(v

′) = −z
1
r
(xr−1z′/z; x2r )∞
(xr+1z′/z; x2r )∞

: W−αj
(v)U−αj±1(v

′) :, (B.37)

Uωj
(v)W−αj

(v′) = z
1
r
(xr−1z′/z; x2r )∞
(xr+1z′/z; x2r )∞

: Uωj
(v)W−αj

(v′) :, (B.38)

W−αj
(v)Uωj

(v′) = −z
1
r
(xr−1z′/z; x2r )∞
(xr+1z′/z; x2r )∞

: W−αj
(v)Uωj

(v′) : . (B.39)

From these, we obtain

W−αj

(
v +

r

2
− π

√−1

2ε

)
V−αj±1(v) = 0 = V−αj±1(v)W−αj

(
v − r

2
− π

√−1

2ε

)
, (B.40)

W−αj

(
v +

r

2
− π

√−1

2ε

)
Vωj

(v) = 0 = Vωj
(v)W−αj

(
v − r

2
− π

√−1

2ε

)
, (B.41)

U−αj±1(v)W−αj

(
v − r − 1

2

)
= 0 = W−αj

(
v +

r − 1

2

)
U−αj±1(v), (B.42)

Uωj
(v)W−αj

(
v − r − 1

2

)
= 0 = W−αj

(
v +

r − 1

2

)
Uωj

(v). (B.43)

Appendix C. Commutation relations of Φ(u)a
′

a and Ψ∗(v)ξ
′

ξ

In this appendix, we give a remark on the commutation relation (3.14). In [14] we proved
(3.14) on the assumption of the commutativity of U−αj

(v) and V−αj
(v′). From (B.29), however,

U−αj
(v) and V−αj

(v′) commute at all points but at v′ = v ± 1
2 + π

√−1
2ε

. Nevertheless, (3.14)
holds, which we will briefly show in this appendix.

Let a′ − a = ε̄μ and ξ ′ − ξ = ε̄ν on (3.14). We assume that μ � ν. (The case μ > ν

can be similarly proved.) When μ = 0, (3.14) follows from (B.15)–(B.17) and (B.28). When
μ = 1, the difference of the both sides of (3.14) can be calculated as follows:

�(u)a+ε̄1
a �∗(v)

ξ+ε̄ν

ξ − χ(u − v)�∗(v)
ξ+ε̄ν

ξ �(v)a+ε̄1
a

= Uω1(u)Vω1(v)

∮
C

dz′
1

2π
√−1z′

1

∮
C ′

ν∏
j=1

dzj

2π
√−1zj

[U−α1(u1), V−α1(v1)]

×V−α2(v2) · · · V−αν
(vν)f (u1 − u,K01)

n−1∏
j=0
j �=1

[Kj1]−1
ν−1∏
j=0

f ∗(vj+1 − vj , Ljν),

(C.1)

where zj = x2vj and z′
j = x2uj . From (B.29) the integral with respect to z1 of (C.1) can

be evaluated by the residues at z1 = −x±1z′
1. Repeating similar calculations performed in
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section 4.4, the RHS of (C.1) can be rewritten as a total difference of such a form

Uω1(u)Vω1(v)

(∮
x−rC

−
∮

xrC

)
dz′

1

2π
√−1z′

1

∮
C ′

ν∏
j=2

dzj

2π
√−1zj

×W−α1(u1)V−α2(v2) · · · V−αν
(vν)G(u1), (C.2)

where

G
(
u1 +

r

2

)
= 1

x−1 − x
f (u1 − u, a01)

n−1∏
j=0
j �=1

[aj1]−1
ν−1∏
j=0

f ∗(vj+1 − vj , ξjν)

∣∣∣∣
v1=u1+ 1

2 + π
√−1
2ε

.

In the present case, there are at most three poles at u1 = u− r−1
2 , v− r

2 − π
√−1
2ε

, v2 + r
2 − π

√−1
2ε

,
inside the contour for z′

1-integration. The residues at those three points vanish because of
(B.43), (B.41) and (B.40), respectively. Therefore, we have

�(u)a+ε̄1
a �∗(v)

ξ+ε̄ν

ξ − χ(u − v)�∗(v)
ξ+ε̄ν

ξ �(v)a+ε̄1
a = 0.

When μ � 2, the difference of the both sides of (3.14) can be calculated as follows:

�(u)
a+ε̄μ

a �∗(v)
ξ+ε̄ν

ξ − χ(u − v)�∗(v)
ξ+ε̄ν

ξ �(v)
a+ε̄μ

a

=
μ∑

λ=1

∮
C

μ∏
j=1

dz′
j

2π
√−1z′

j

∮
C ′

ν∏
j ′=1

dzj ′

2π
√−1zj ′

Xλ, (C.3)

where

Xλ = Uω1(u)Vω1(v)V−α1(v1)U−α1(v1) · · · V−αλ−1(vλ−1)U−αλ−1(uλ−1)[U−αλ
(uλ), V−αλ

(vλ)]

×U−αλ+1(uλ+1)V−αλ+1(vλ+1) · · · U−αμ
(uμ)V−αμ

(vμ) · · · V−αν
(vν)

×
μ−1∏
j=0

f (uj+1 − uj ,Kjμ)

n−1∏
j=0
j �=μ

[Kjμ]−1
ν−1∏
j ′=0

f ∗(vj ′+1 − vj ′ , Lj ′ν). (C.4)

From (B.29), the integral with respect to zλ of Xλ can be evaluated by the residues at
zλ = −x±1z′

λ. Similarly to (C.2), the result can be rewritten as a total difference of such
a form∮

C

μ∏
j=1

dz′
1

2π
√−1z′

j

∮
C ′

ν∏
j ′=1

dzj ′

2π
√−1zj ′

Xλ = Uω1(u)Vω1(v)

(∮
x−rC

−
∮

xrC

)
dz′

λ

2π
√−1z′

λ

×
∮

C

μ∏
j=1
j �=λ

dz′
1

2π
√−1z′

j

∮
C ′

ν∏
j ′=1
j ′ �=λ

dzj ′

2π
√−1zj ′

×V−α1(v1)U−α1(v1) · · · V−αλ−1(vλ−1)U−αλ−1(uλ−1)

×W−αλ
(uλ)U−αλ+1(uλ+1)V−αλ+1(vλ+1) · · · U−αμ

(uμ)

×V−αμ
(vμ) · · · V−αν

(vν)Gλ(uλ), (C.5)

where

Gλ

(
uλ +

r

2

)
= 1

x−1 − x

μ−1∏
j=0

f (uj+1 − uj , ajμ)

n−1∏
j=0
j �=μ

[ajμ]−1

×
ν−1∏
j ′=0

f ∗(vj ′+1 − vj ′ , ξj ′ν)

∣∣∣∣∣
vλ=uλ+ 1

2 + π
√−1
2ε

.
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In the present case, there are at most four poles at uλ = uλ±1 ± r−1
2 , vλ±1 ± r

2 − π
√−1
2ε

, inside
the contour for z′

λ-integration. The residues at those four points vanish because of (B.42)
and (B.40), respectively. (When λ = 1, we also use (B.43) and (B.41) as well as (B.42) and
(B.40).) Therefore, we prove (3.14) for μ � 2.
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